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Abstract:
The visible and significant presence of satellites in the night sky has an impact on astronomy
and astrophotography activities for both amateurs and professionals, by perturbing observations
sessions with undesired streaks in captured images, and the number of spacecrafts orbiting the
Earth is expected to increase steadily in the coming years. In this article, we test an existing method
and we propose a dedicated approach based on eXplainable Artificial Intelligence to detect streaks
in astronomical data captured between March 2022 and February 2023 with a smart telescope
in the Greater Luxembourg Region. To speed up the calculation, we also propose a detection
approach based on Generative Adversarial Networks.

1 Introduction

We live in a time when global connectivity
is becoming an unstoppable trend, with mega
satellite constellations such as SpaceX’s Starlink,
OneWeb and Amazon’s Project Kuiper prolif-
erating in low-Earth orbit (Langston and Tay-
lor, 2024). While these satellite networks have
started to revolutionize the industry, they also
raise growing concerns, for multiple aspects (en-
vironment, defence, culture, etc.) (Venkatesan
et al., 2020). In particular, the impact of these
mega-constellations on astronomy and astropho-
tography has become a hot topic (Walker et al.,
2020), calling into question the possibility of ob-
serving the night sky without disturbance.

A modern obstacle is satellite light pollution,
which occurs when orbiting satellites reflect the
sun’s light unto the Earth. This light disturbance
can make astronomical observations considerably
more difficult (Lawler, 2023), and affect the qual-
ity of images captured by amateur and profes-
sional astronomers alike:

� Light trails: mega-constellation satellites can
create light trails as they pass in front of a

telescope or camera lens during long exposure
photography. These streaks can compromise
image quality by leaving unwanted lines of
light across astronomical images.

� Increased sky brightness: the sun’s reflection
off satellite surfaces can contribute to a gen-
eral increase in the brightness of the night sky.
This makes it more difficult to observe and
capture faint, distant celestial objects, such
as galaxies, nebulae and faint stars.

� Reduced contrast: the presence of moving
satellites can reduce the contrast between ce-
lestial objects and the sky background. Subtle
details in astronomical pictures, which depend
on a dark, uniform night sky, can be compro-
mised by bright streaks and scattered spots.

� Complications for image calibration: satellite
light trails can disrupt the process by intro-
ducing non-stellar elements into the images,
making treatment difficult or even impossible.

� Need for advanced post-processing: this may
require technical adjustments and specialized
software to mitigate undesirable effects caused
by satellites, such as inpainting.



It’s also a problem for professional ground-
based observatories (Hainaut and Williams,
2020), making it imperative to set up a process
to estimate concrete impact on the quality of
large digital sky surveys (Lu, 2024), avoid distur-
bances and then correct data if possible (Tyson
et al., 2020). The effect is significant: as re-
cent studies have shown (Lawler, 2023; Baren-
tine et al., 2023), the increase in traffic in low-
Earth orbit will inevitably lead to a loss of astro-
nomical data and therefore reduce the possibili-
ties of discoveries on the ground, as weak astro-
physical signals are increasingly lost in the noise.
The International Astronomical Union (IAU) re-
cently published a ’Call to Protect the Dark and
Quiet Sky from Harmful Interference by Satellite
Constellations’ 1. Furthermore, it’s a hot topic
for space-based observatories like Hubble (Kruk
et al., 2023), which adds a number of constraints
that are difficult to resolve, especially given the
cost of operating such facilities in space.

In this article, we propose the study of a
dataset made up of astronomical images captured
over a year with a smart telescope, in conditions
accessible to amateurs, and we evaluate the quan-
tity of images effectively impacted by satellite
trails. The rest of the paper is structured as fol-
lows. In Section 2, we present a brief review of
the state of the art concerning the detection of
satellite streaks in astronomical images. Section
3 describes the dataset of images captured by the
author, while Section 4 proposes a study of this
dataset using different methods. In Section 5, we
discuss the results, before concluding and propos-
ing some perspectives in Section 6.

2 Related works

For many years now, the scientific community
has proposed many techniques to detect and track
satellites, and to deal with the trails they cause in
astronomical images (Nir et al., 2018; Calvi et al.,
2021; Jiang et al., 2023). Specific software for
astronomical images processing propose features
to manage this problem, like SharpCap 2. It is
important to note that all types of fast-moving
Near-Earth Objects, such as meteors, satellites
or even cosmic rays, can leave streaks, trails and
linear features on astronomical images (Nir et al.,
2018).

1https://cps.iau.org/documents/49/techdoc102.
pdf

2https://www.sharpcap.co.uk

In the Python software ecosystem, we can
mention these tools:

� ASTRiDE aims to detect streaks in astro-
nomical images (Kim, 2016) with boundary-
tracing and morphological parameters.
ASTRiDE can detect not only long streaks,
but also relatively faint, short or curved ones.
As we will see later in this article, this is
also a problem because it tends to confuse
real streaks with tracking problems – so it
requires a fine configuration like in (Duarte
et al., 2023).

� Authors of (Danarianto et al., 2022) proposed
a Python pipeline for lightweight streak detec-
tion, identification and initial orbit determina-
tion from FITS raw files captured by amateur-
grade telescopes – but it was tested on only
a few images captured around the celestial
equator (85). FITS (Flexible Image Trans-
port System) is a file format most commonly
used into store astronomical data.

� A research team applied the probabilistic
Hough transform through a Python scripts
using well-known open source libraries like
openCV and scikit-images, and by using
GPU-specific computation to detect streaks
in FITS files captured by the Tomo-e Gozen
camera at Kiso Observatory in Japan (Ce-
garra Polo et al., 2021). Unfortunately, the
source code is not available.

� pyradon is a Python package based on Fast
Radon Transform (FRT) to find streaks in 2D
astronomical images (Nir et al., 2018).

Some existing approaches are based on Deep
Learning. For instance, an approach based on
YOLO (You Only Look Once) was proposed by
(Varela et al., 2019) to detect streaks in images
captured by a multi-camera wide field of view sys-
tem. The authors note that the labelling of train-
ing dataset is an issue. Furthermore, a recent
work compared two techniques based on Deep
Convolutional Neural Networks: an extended fea-
ture pyramid network (EFPN) with faster region-
based CNNs (Faster R-CNN) and a feature pyra-
mid network (FPN) with Faster R-CNN (El-
hakiem et al., 2023). This approach is elaborated
but it was only tested on synthetic data.

In this paper, we compare an existing ap-
proach with a dedicated technique combining
Deep Learning and eXplainable Artificial Intel-
ligence to search for streaks in astronomical data
that we have captured ourselves using smart tele-
scopes.



3 Data acquisition

Nowadays, Electronically Assisted Astronomy
(EAA) is increasingly applied by astronomers to
observe Deep Sky Objects (DSO), i.e. astronom-
ical objects that are not individual stars or Solar
System objects, like nebulae, galaxies or clusters.
By capturing images directly from a camera cou-
pled to a telescope and applying lightweight im-
age processing, EAA allows to generate and dis-
play enhanced images on screens (laptop, tablet,
smartphone), even in places heavily impacted by
light pollution and poor weather conditions. The
recent years brought the emergence of smart tele-
scopes, making sky observation more accessible
(Parisot et al., 2022). Even the scientific commu-
nity is taking advantage of these instruments to
study astronomical events (i.e. asteroids occulta-
tions, exoplanets transits, eclipses) .

In this context, MILAN Sky Survey is a set
of raw images with DSO visible from the North-
ern Hemisphere (galaxies, stars clusters, nebulae,
etc.), collected during 205 observation sessions
(Parisot et al., 2023). These images were cap-
tured between March 2022 and February 2023
from Luxembourg Greater Region by using the
built-in alignment and stacking features of a Stel-
lina smart telescope, based on an Extra Low Dis-
persion doublet with an aperture of 80 mm and
a focal length of 400 mm (focal ratio of f/5), and
equipped with a Sony IMX178 CMOS sensor with
a resolution of 6.4 million pixels. A CLS filter
(City Light Suppression) is placed in front of the
camera sensor. The Dawes Limit of the instru-
ment is 1.45 arc-seconds.

The dataset and the data acquisition process
is deeply is described in (Parisot et al., 2023),
here is a short summary:

� The default settings of Stellina were applied,
i.e. 10 seconds of exposure time and 20 dB of
gain for each single image. These values are a
satisfying trade-off to obtain good images with
the alt-azimuth motorized mounts of the in-
struments (higher value of exposure time may
cause a reduction in captured image quality,
particularly with moving blur (Loke, 2017),
higher gain may increase the noise level).

� For each observation session, the instrument
was installed in a dark environment (no direct
light) and properly balanced using a bubble
level on a stable floor (it’s mandatory to en-
sure a good tracking).

� Observation sessions were conducted only
when the sky was clear and of reasonable qual-

ity. The authors were always present during
observations to deal with any weather-related
issues such as wind, cloud, fog, rain, or dis-
turbance from animals.

In total, 205 observation sessions, leading to
50068 FITS images of resolutions 3096 × 2080
were obtained (corresponding to a field of view
of approximately 1° Ö 0.7°). As each image was
obtained with an exposure time of 10 seconds, it
represents a total cumulative time of 139 hours,
4 minutes and 40 seconds.

4 Method

We have analyzed the MILAN Sky Survey
dataset with different methods, to count FITS
files containing streaks, and so the maximum of
images impacted by satellites. The computations
were realized with the following hardware: 40
cores and 128 GB RAM (Intel(R) Xeon(R) Sil-
ver 4210 CPU @ 2.20GHz) and NVIDIA Tesla
V100-PCIE-32GB.

4.1 Detection with ASTRiDE

First, we have tested ASTRiDE, by using dif-
ferent settings and by filtering the results (Ta-
ble 1). ASTRiDE first pre-processes the image
by removing the background using its level and
standard deviation before searching for streaks
(Kim, 2016). It then computes the contour map
to identify all object borders within the image.
ASTRiDE then analyzes the morphologies of each
object, as determined by the morphological pa-
rameters, to differentiate between streaks and
stars.

By using the default parameters (contour
threshold=3, shape cut=0.2), and by considering
FITS images with at least one detected streak, we
observed this selection is too large, retaining im-
ages with just blurred stars due to tracking errors
(example: Figure 1).

To make a more restrictive selection, we have
filtered FITS images with at least one streak with
a minimal perimeter (128 pixels), and we have
found that streaks are detected in 1316 FITS files
for a total of 50068 files, i.e. 2.6 %. In other
words, it detected than 137 observation sessions
are impacted for a total of 205, i.e. 66 % (Figure
2.

With the standard settings of ASTRiDE, the
selection is too large. Moreover, and given the
fact that FITS files have an high resolution, the



Figure 1: False positive example of streak, due to
tracking error. The FITS file is stored in NGC457-
20220807.zip.

Figure 2: Graphical output of ASTRiDE, after the
detection of a large streak in a FITS file captured
during an observation session of the Messier 81 galaxy
(stored in M81-20220308.zip).

computation may be slow (the tools does not use
GPU to speed-up the analysis – the ASTRiDE’
authors advice is to deal with parameters to find
a good trade-off between accuracy and speed).

So we have tried with optimized settings which
are proposed by ASTRiDE authors on the official
source code repository (Kim, 2016): by increasing
contour threshold and by reducing shape cut, we
avoided selecting FITS files that are impacted by
minor tracking errors. Nevertheless, the selection
was still too large.

One of the advantage of ASTRiDE is its abil-
ity of detecting faint streaks, allowing to detect
images damaged by bad tracking (wind, unex-
pected movement of telescopes, etc.). For this
use-case, and keeping into account that our FITS
raw images are noisy and far from perfect (espe-
cially due to tracking problems), this tool is too
sensitive and it is difficult to find the configura-
tion that leads to the detection of streaks pro-
duced by satellites by ignoring other issues (Fig-
ure 1).

4.2 Detection with a dedicated
ResNet50 classifier and XRAI

We trained a dedicated classifier to detect im-
ages with real streaks – and ignoring defects due
to tracking. As we have seen in the previous sec-
tions, there are many tools available for this task,
the aim is not to re-invent the wheel. Our aim
here is rather to have a model that is fully com-
patible with our input data and its specific char-
acteristics (in particular the fact that it is raw,
unfiltered and not debayered).

To this end, we used ASTRiDE to filter FITS
images without any streak and/or defect, as
ASTRiDE is a sensible and efficient tool for this
task. Starting from these images, we generated a

Table 1: Experiments with ASTRiDE to detect streaks in FITS images of MILAN Sky Survey. Different settings
for ASTRiDE have been tested and compared.

Settings Filter FIST Files with
detected streaks

Observation ses-
sions impacted

Default (contour threshold=3,
shape cut=0.2)

At least one streak 8704/50068 198/205

Default (contour threshold=3,
shape cut=0.2)

At least one streak with
perimeter higher than
128 pixels

1316/50068 137/205

Optimized (contour threshold=5,
shape cut=0.1)

At least one streak 903/50068 101/205

Optimized (contour threshold=5,
shape cut=0.1)

At least one streak with
perimeter higher than
128 pixels

404/50068 82/205



dataset with synthetic streaks to train and eval-
uate a binary classifier. In practice, here are the
steps followed:

� From the raw data described in Section 3, we
built a set of 25070 RGB images with 224x224
pixels – cutting FITS images into patches to
get a resolution that fits to ResNet50 models.

� For each image, we applied a basic stretch to
adjust the brightness and contrast to bring out
details and make faint structures more visible.

� Random synthetic streaks have been added on
half of the images, then we formed two distinct
groups, so as to associate a class with each im-
age: images with and images without streaks
(we made sure that each group was balanced
– to have a classifier with good recall). These
streaks were generated by drawing random
lines, with different thickness, sizes and color
intensity.

� We made 3 sets: training, validation and test
(80%, 10%, 10%).

� A dedicated Python prototype was developed
to train a ResNet50 model to learn this bi-
nary classification. The basic image process-
ing tasks were performed following best prac-
tices for optimizing CPU/GPU usage (Castro
et al., 2023).

� Empirically, the following hyper-parameters
were used for training: ADAM optimizer,
learning rate of 0.001, 50 epochs, 32 images
per batch. We thus obtained a ResNet50
model with an accuracy of 97% on the vali-
dation dataset. Note that other architectures
were also tested (such as VGG16 and Mo-
bileNetV2), but the results here are largely
similar.

� At the end, we obtained a model with a pre-
cision of 0.940, a recall of 0.805 and then a
F1-score of 0.867 (Table 2).

Inspired by recent works in the industrial
(Roth et al., 2022) and health domains (Chad-
dad et al., 2023), and to check the robustness of
the trained Resnet50 model, we analysed the out-
put with XRAI (Region-based Image Attribution)
(Kapishnikov et al., 2019). Frequently used in
eXplainable Artificial Intelligence for Computer
Vision tasks, XRAI is an incremental method
that progressively builds the attribution scores of
regions (i.e. the regions of the image that are
most important for classification). XRAI is built
upon Integrated Gradients (IG) (Sundararajan
et al., 2017) which uses a baseline (i.e. an im-
age) to create the attribution map. The baseline

choice is application-dependent, and in our case
we operate under the assumption that a black
one is appropriated because it corresponds to the
sky background, and the attribution maps is cal-
culated according to the XRAI integration path
and reduces the attribution scores given to black
pixels. In practice, we used the Python package
saliency 3 and analysed the output of the last
convolution layer. To generate a heatmap indi-
cating the attribution regions with the greatest
predictive power, we keep only a percentage of
the highest XRAI attribution scores here (for in-
stance, 10 %).

Figure 3: At the top, a stretched 10-second frame
of Messier 57. At the bottom, the XRAI heatmap
highlighting the pixels that are considered by the
Resnet50 classifier for detecting the presence of
streaks, by keeping 10% of the highest XRAI attri-
bution scores.

With this pipeline, we have found that streaks
are detected in 25 FITS files for a total of 50068
files, i.e. less than 0.05 %; it detected than
18 observation sessions are impacted for a to-
tal of 205, i.e. 0.1 %. In this case, we visually
noted with the heatmap that the streaks are not
caused by tracking problems, but by objects pass-
ing through the instrument’s field of view dur-
ing observation, and very probably by satellites.
For example, we can mention the following files

3https://pypi.org/project/saliency/



present in (Parisot et al., 2023): image 44 in
Barnard142-143-20220922.zip, image 22 in M17-
20220723.zip, image 40 in M57-20220602.zip, im-
age 87 in M65-20220426.zip, image 40 in M103-
20220808.zip, image 167 in M10-20220615.zip.

4.3 Fast approximation with a
Pix2Pix model

Computing a heatmap with XRAI comes at a
cost: it requires more computational time and re-
sources than a simple inference of the ResNet50
model. If we consider the analysis of a 3584×3584
astronomical image: with no overlap, it may
be necessary to evaluate the ResNet50 predic-
tion and the XRAI heatmap for 256 patches of
224 × 224 pixels – this may take some time de-
pending on the hardware. To minimise the num-
ber of calculations required, we can apply two
simple strategies:

� Reduce the size of the image to decrease the
number of patches to be evaluated.

� Process only a relevant subset of patches –
for example, ignoring those for which the
ResNet50 classifier detects nothing.

An other solution consists in estimating the
XRAI heatmap with Generative Adversarial Net-
works (GAN), a class of Deep Learning frame-
works that are frequently applied for Computer
Vision tasks. A GAN is composed of two Deep
Learning models: a generator that ingests an im-
age as input and provides another image as out-
put, and a discriminator which guides the gen-
erator during the training by distinguishing real
and generated images. Both are trained together
through a supervised process – with the goal to
obtain a generator that produces realistic im-
ages. Among the numerous existing GAN archi-
tectures, we selected Pix2Pix – a conditional ad-
versarial approach that was designed for image to
image translation (Isola et al., 2017), and applied
in many use-cases such as image colouration and
enhancement (KumarSingh et al., 2023).

Thus, a Pix2Pix model has been designed to
learn the transformation from images with syn-
thetic streaks (like in Section 4.2) and images

with the same synthetic streaks but with an other
color. We applied the standard Pix2Pix architec-
ture as described and implemented with Tensor-
flow 4, taking input images of 256 × 256 pixels,
with the same resolution for outputs. The loss
function was based on the Peak Signal-to-Noise
Ratio (PSNR), and we trained the model dur-
ing 100 epochs, the batch size was set to 1, and
the process was realized with a learning rate of
0.0001. To improve the training phase, as de-
scribed in (Tran et al., 2021), we applied random
data augmentation during each epoch with the
imgaug Python package (Jung, 2019).

Figure 4: Example of 256x256 patch generated with
a Pix2Pix model – with highlighted streaks.

It led to a Pix2Pix model with a good PSNR
(higher that 38.5) – able to reproduce an anno-
tated image (Figure 4), similar to what can be
obtained with ResNet50 and the XRAI heatmap.
We simply note that this model is slightly more
sensitive to noise, especially if it is grouped in
zones (and this can sometimes happen with hot
pixels (O’Brien, 2023)).

In terms of performances, running an infer-
ence with the Pix2Pix model on a patch of 256
× 256 pixels is a better alternative to calculating

4https://github.com/affinelayer/
pix2pix-tensorflow

Table 2: Confusion matrix with results of the Resnet50 model on test set (i.e. set of images with synthetic
streaks that were randomly added).

Synthetic streak(s)
detected: NO

Synthetic streak(s)
detected: YES

FITS images without synthetic streak(s) 1886 103
FITS images with synthetic streak(s) 393 1619



a heatmap with XRAI on a patch of 224 × 224
pixels: for example, execution time is halved on
a laptop without a GPU.

In practice, we used this Pix2Px model to vi-
sually check the results obtained in the previous
section, by generating and then viewing the out-
put of each image in which a streak was detected.

5 Discussions

As it is infeasible to check several tens of thou-
sands of raw images manually, we used different
automated methods to filter potentially affected
images. It is possible that certain cases have not
been identified, in particular when obstacles in
the image, tracking problems and streaks can be
found in the same images.

Furthermore, the different approaches were
tested on images obtained with specific equip-
ment (aperture of 80mm, focal length of 400mm,
recent CMOS sensors, alt-azimuth mount) and
imperfect conditions. They can therefore be ap-
plied to images obtained with identical equipment
or with similar characteristics (i.e. other models
of smart telescopes with similar technical charac-
teristics). Conversely, applying these techniques
on images obtained with smaller or larger focal
length instruments would require constituting a
dataset that would contain this type of data, to
then re-train models.

6 Conclusion and perspectives

This paper presents various approaches based
on Deep Learning to detect streaks from astro-
nomical images captured with smart telescopes
from Luxembourg Greater Region, which re-
quired collecting data for over 188 different tar-
gets visible from the Northern Hemisphere, with
equipment accessible to amateurs.

One approach consists in using ASTRiDE,
and this tool is efficient to detect images without
streak. The second one is a pipeline combining a
ResNet50 binary classifier and the XRAI method,
allowing the detection of real streaks with a good
accuracy. The last one is an experimental model
based on Generative AI in order to highlight the
pixels corresponding to the detected streaks.

As a result, we observed that less of 0.05 per-
cent of the captured raw images are damaged by
streaks, potentially caused by satellites. In this
case it’s not much, not enough to require special

treatment to fix the affected raw files, a simple
filter here may be enough to ignore them after
detection.

In future work, we plan to reproduce and
improve the current tests on recent and future
observations, we plan to gather additional
astronomical data (especially from the South
Hemisphere), and we will work on optimiza-
tions to embed the presented Deep Learning
approaches into low resource devices.

Data availability: The MILAN Sky Survey
can be accessed by following the links listed in
(Parisot et al., 2023). Additional materials used
to support the findings of this study may be avail-
able from the corresponding author upon request.
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