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a b s t r a c t

Missing data in river flow records represent a loss of information and a serious drawback in water
management. In this work, we introduce gapIt, a user-driven case-based reasoning tool for infilling gaps
in daily mean river flow records. Given a set of flow time series, gapIt builds a database of artificial gaps
for which it computes several flow estimates, to find the best combinations of infilling algorithm and
automatically selected donor station(s), according to state-of-the-art performance indicators. We ob-
tained satisfactory results with Nash-Sutcliffe >0.7 for more than half of the ~5000 synthetic gaps of
various lengths and positions, randomly created along the available records. gapIt was evaluated on 24
daily river discharge time series recorded in Luxembourg over seven years from 01/01/2007 to 31/12/
2013. We also discuss the benefits of coupling this approach with user-expertise for an improved infilling
of real data gaps.

© 2016 Elsevier Ltd. All rights reserved.
Software availability

Name of software: gapIt
Developer: Olivier Parisot (olivier.parisot@list.lu)
Programming language: Java
Required hardware: 4 GB RAM minimum
Supported systems: Windows, Unix, Linux, Mac
Required softwares: Maven (�3.0.2), JDK (�1.7)
Availability: https://github.com/ERIN-LIST/gapIt
License: GNU General Public License version 3
1. Introduction

Long uninterrupted hydrological time series are often not
available for many of the stream gauges in the world. Rather, time
series of hydrological data are often affected by data gaps, which
are discontinuities in the record of data. They are an inevitable
consequence of factors such as station maintenance, equipment
malfunctioning, human errors, changes in instrumentation and
data processing issues (Harvey et al., 2010). Missing data in river
starini).
flow records represent a loss of information and a serious drawback
inwater management. The existence of gaps results in difficulties in
data interpretation and is a large source of uncertainty in data
analysis. Specifically, the presence of discontinuities precludes the
computation of hydrological statistics and physiographic indices. It
also limits the use of such data for hydrological or hydrodynamic
model calibration/validation purposes. A consequence of these is-
sues is the need of data infilling methods to reconstruct missing
data, when appropriate and before hydrological time series can be
used in a number of applications.

From a technical point of view, a wide choice of data analysis
tools is nowadays offered to hydrologists. For instance, specific user
friendly software tools are already available or can be developed in
platforms like R1 or Matlab2 to interpolate missing data and/or
address hydrological problems. But most of these tools require
some data mining and machine learning expertise, as well as fine-
tuning in order to meet user needs and be properly exploitable by
end-users (Serban et al., 2013). As a result, hydrologists have access
to a collection of usable tools, but they still need to deal with several
technical issues (like data wrangling, tuning predictive algorithms)
1 http://www.r-project.org/.
2 http://www.mathworks.com/products/matlab/.
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3 http://www.hydroclimato.lu.
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before solving their initial problem, i.e. infilling missing values.
Data infilling is a challenging task that has been addressed by

previous research work.

2. Related work

For infilling gaps in hydrological time series, classical methods
of data analysis have long been applied (Salas, 1980) and recent
studies have proposed more efficient techniques (Harvey et al.,
2010; Mwale et al., 2012). Most of the methods proposed in the
literature are based on data transfer from one or more donor sta-
tions (gauges) to a target station. Among all possible infilling
methods, the choice of themost appropriate one is not a trivial task.
The same holds true for the selection of a set of donor stations.
Moreover, results greatly depend on the context and, in non auto-
mated techniques, also on the user expertise.

Recently, Harvey et al. (2010) tested different infilling tech-
niques, simulating an entire target flow record, for several stations
in the UK. For each target station, two donor stations were selected
a priori, based on the hydrological knowledge of the region and
catchment metadata. Their work focused on the performance
analysis of gap infilling techniques. In a follow-up study, Harvey
et al. (2012) assessed a wide range of target-donor combinations,
trying at the same time to improve data infilling performance by
either seasonally grouping flows or excluding known
inhomogeneity.

Gyau-Boakye and Schultz (1994) presented a Decision Support
System (DSS) for selecting themost appropriate infillingmodel, as a
function of gap length, season, climatic region and data character-
istics of the records. The main disadvantage of their approach is
that all rules are hard-coded and specific to a given region, namely
West Africa. The same idea was applied by Johnston (1999) to build
a DSS that helps experts select an estimation method for missing
rainfall data in the United States. More recently, Griffioen et al.
(2006) proposed a Case-Based Reasoning system (CBR) to inter-
compare water stress among different catchments in Europe. In
their work, CBR was presented as a retrieval method to offer large
amounts of filtered information to the end-user. In a broader
context, Matthies et al. (2007) provided a review on environmental
DSS, showing a general tendency towards integration and visuali-
zation of temporal and spatial results.

Despite the numerous studies available in the literature, a
standardized procedure for gap filling in hydrological time series is
still missing. One of the main limitations of many of the currently
available approaches is their incomplete level of automation.
Generally, donor stations are often determined a priori and tend to
be specific to only a given region of interest. The user expertise is
fundamental for this type of settings but it also limits the level of
automation and the transferability of the approach to different
areas.

In this work, we present a first attempt towards standardization,
providing an interactive tool that allows performing gap filling in a
consistent and traceable manner, bridging the gap between data-
driven and user-expertise approaches.

gapIt is an interactive and visual data-driven tool that offers
several infilling techniques, coupled with different sets of donor
stations. It assesses the performance of all possible configurations,
i.e. combinations of infilling method and set of donor station(s), to
fill a given gap in a consistent way, eventually providing the best
data-driven solution according to performance indicators. The vi-
sual interface allows users to select different infilling methods and/
or donor station(s) than those automatically proposed by the tool,
according to their expertise and specific knowledge of the region of
interest. The fact that users can interactively inject their knowledge
allows an iterative refinement of the results, while keeping track of
all modifications.
In the general practice, infilling techniques require both a strong

methodological background and a significant knowledge of the
application domain (Maimon and Rokach, 2005; Domingos, 2012).
In this paper, we show how gapIt can provide a bridge between a
purely data-driven approach and an infilling method based on user
expertise only. The automated approach, coupled with a visual in-
spection system for user-defined refinement, allows for standard-
ized infilling, where subjective expert decisions can easily be
incorporated in a traceable manner.

In the remainder of this paper, we will present a case study and
the related data sources (section 3). Then we describe the pro-
posed gapIt algorithm in section 4, which is followed by an
analysis of the results obtained for both synthetic and real gaps in
section 5. Advantages and limitations of the method are summa-
rized at the end.
3. Case study

The dense river network of hydrometric stations in Luxembourg
offers an excellent opportunity to test the proposed tool. The gauge
network considered here is composed of 24 stations, displayed in
Fig. 1, including both very responsive and groundwater-fed rivers.
The region has a temperate, semi-oceanic climate. Precipitation is
relatively uniform throughout the year, although strong seasonality
in low flow exists due to higher evapotranspiration from July to
September. High discharge values are recorded in winter
(maximum JanuaryeFebruary), sometimes leading to inundations,
while low flows are observed particularly in September. The in-
fluence of snow can be considered negligible.3

We use discharge data, originally available as 15-min time series
and subsequently aggregated using gapIt itself to daily values,
covering the period from 01/01/2007 to 31/12/2013. A total number
of 28 gaps are present in the dataset; most of them have been
observed in winter.
4. Methods and tools

In this section, algorithm implementation and input data re-
quirements for gapIt will be described. It has to be noted that this
approach is based on a single variable, discharge, provided as input
to the software. This loosens dependency on other types of vari-
ables, for instance catchment rainfall, which may not always be
available (Harvey et al., 2010). In the following, we designate as
target station (respectively, donor station(s)) the station charac-
terized by a gap to be infilled (respectively, the station(s) whose
data is used to derive infilled data for the target). The underlying
hypothesis of the presented tool is the availability of a sufficiently
dense river network that provides continuous measurements. gapIt
infills gaps in discharge time series, providing the final user with
the best solution that is possible to obtain, given the available donor
stations. The best solution is individuated based on performance
measures. As we are dealing with both synthetic and real gaps, two
different strategies will be proposed to compute performance
measures, depending on the type of gap. The insertion of estimated
values in the database in lieu of gaps is subject to the acceptance by
the end-user.

All infilled data are consistently flagged, for the sake of trace-
ability of the reconstructed values. Moreover, the configuration
used for infilling each gap is stored in the database, for the sake of
reproducibility.

http://www.hydroclimato.lu


Fig. 1. Gauging stations in the river network of Luxembourg. The upper right panel shows the location of Luxembourg in North West Europe.
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4.1. Software architecture and third-party libraries

gapIt is a multiplatform standalone tool developed in Java. It is
mainly based on Cadral, a data analysis platform (Didry et al., 2015)
developed in-house and leveraging WEKA (Witten et al., 2011) for
data mining purposes, and JFreeChart (Gilbert, 2002) for graphical
data representation.
4.2. Input data

gapIt is capable of importing/exporting data in CSV format or in
WEKA's ARFF format. The data infilling process uses the following
input data:

� Time series of hydrological data (discharge), recorded at several
gauging stations within the river network described earlier. For
each station, the data consists of a sequence of numerical values
with timestamps.

� Geographic coordinates of gauging stations (longitudes and
latitudes).

� Upstream/downstream relationships (if applicable, depending
on the stations); this information is stored in the form of a de-
pendency graph, a simple scheme displaying the different re-
lationships among stations.
In case an upstream/downstream station is not present or
available in the same river as the target station, we use the closest
station in a tributary as a proxy upstream gauge and, as a proxy
downstream gauge, the closest station in the river where the
stream with the target station flows.
4.3. Visualization and data preprocessing

A graphical user interface (GUI) allows the visual inspection of
data, in terms of time series, maps and relationships. The user can
typically visualize the different gaps (Fig. 2) in their spatio-
temporal context. The GUI consists of three panels showing:

� The list of gaps present in all time series (Fig. 2, panel 1).
� A map (Fig. 2, panel 2) showing the locations of the gauging
stations. Based on the user selection, the gauge of interest is
interactively highlighted, to easily put it in its geographic
context.

� A line chart (Fig. 2, panel 3) to let end-users inspect temporal
trends of the selected time series and put gaps in their temporal
context.

Moreover, the tool offers several data preprocessing features. In
particular, the user can set the desired temporal resolution of the



Fig. 2. Graphical user interface of gapIt: (1) gap list, (2) map showing the locations of the available stations, (3) time series visualization.
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time series, i.e. creating hourly, daily andmonthly aggregate values.
In the present study, it was deemed more appropriate to perform
gap infilling on daily values, rather than on the noisier original 15-
min observations (Harvey et al., 2010, 2012).
4.4. Gap characterization and inspection

The choice of any particular gap-filling technique depends on
several factors: gap length, season, high/low flow conditions, etc.
(Gyau-Boakye and Schultz, 1994). As a consequence, these charac-
teristics are determined in gapIt and are accessible by the user
through the GUI (Fig. 2).

� Flow (low/medium/high): given the minimum and maximum
value of a certain time series (i.e. station), three equispaced
ranges are defined in order to characterize the type of flow
before and after a gap.

� Rising limb: an outlier detection method is used to detect the
presence of a rising limb, which may indicate the probable
presence of a flood event for the considered gap. More precisely,
the method is based on the local outlier factorwhich computes a
score for each value of the time series by taking into account
values before and after it (Breunig et al., 2000).
� Geographical proximity: the closest station is computed by
applying a simple Euclidean distance on station coordinates.

� Upstream/downstream relationships: the identification of up-
stream and downstream station(s), if present, is carried out on
the basis of the input dependency graph, using a simple nearest-
neighbor search.

� Similarity between time series: this is computed using Dynamic
TimeWarping (DTW) (Berndt and Clifford,1994). This method is
rather popular in time series analysis as it takes into account
time shift and distortion and was already used in hydrology to
find patterns in discharge data (Ouyang et al., 2010). In practice,
due to the high time complexity of DTW, we use an empirically
defined timewindow of size N*gapsize (with N fixed by the end-
user e a reasonable value for N between 3 and 10 helps defining
a compact and sufficient time window).

These properties are computed and displayed in the GUI (Fig. 2).
4.5. Gap infilling

To fill a given gap, we propose a two-phase approach described
in Algorithm 1: the tool starts by computing the best solution
automatically. Then, the end-user can either accept or refine it.
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More precisely, different configurations are considered to infill a
gap. By configuration we mean a combination of donor station(s)
and gap infilling method. For a given gap, gapIt computes all
possible configurations and ranks them according to errors and
performance measures (Section 4.6). The best configuration is
automatically selected by the tool as the one yielding the smallest
root mean squared error (RMSE) (Please see Section 4.6 for more
details). Subsequently, the user/expert can refine it by adjusting any
of its constituents.

Eventually, the configuration approved by the user is applied to
reconstruct the missing data which gapIt stores and flags as infilled
data.
4.5.1. Selection of the donor stations
Selecting donor stations represents the most critical step of the

infilling procedure, as their data is going to be used to estimate the
missing values. Based on the gap characterization data (Section
4.4), the software offers several options to automatically select
donor station(s) among:

� the geographically closest station;
� the station having the most similar time series (based on DTW
as explained in Section 4.4);

� the upstream and/or downstream station.

It is important to highlight that both the geographically closest
station and the onewith themost similar time seriesmay not belong
to the same catchment as the target station. In addition, all different
combinations of donor stations are potentially applicable depending
on the case at hand. For example, the algorithm and/or the user may
use the downstream station and ignore the geographically closest
one. The final set of donor stations depends on several factors, such
as the context, and user expertise, among others.
4 http://commons.apache.org/proper/commons-math/index.html.
4.5.2. Selection of an infilling method
Observations with missing data can of course simply be

omitted in the user application: this trivial approach can be suf-
ficient in several cases (Enders, 2010) or when infilling may risk
being detrimental (Beven and Westerberg, 2011; Beven and Smith,
2014) leading to periods of disinformative hydrological data.
However, it goes without saying that data infilling is an extremely
helpful approach to make the best possible use of time series, for
example to derive accurate long-term statistics. Dealing with
missing values is a well-known topic in data mining and ap-
proaches generally used in this field can be easily transferred to
hydrology.

Among the various infilling methods proposed in the literature
(Pigott, 2001; Marwala and Global, 2009; Van Buuren, 2012), a
comprehensive, though not exhaustive, range of available methods
was selected and integrated into gapIt:
� Interpolation (INTERP) is an easy and efficient solution if time
series do not present steep increases or decreases of measured
values (jumps) in data and when the gap length is rather small.

� Mean value (ZeroR) is a simple solution that consists in
replacing missing numerical values by the mean value: this
approach is still used in many statistical software packages.
However, it can highly disrupt the data structure, thus degrad-
ing the performance of statistical modelling (Junninen et al.,
2004). In this paper, we use Weka's ZeroR classifier.

� The Nearest-neighbors (NN) technique as implemented inWeka
was applied as follows: for each incomplete record, similar re-
cords are identified (by using the Euclidean distance as a brute
force search) among the already selected donor stations, and
then used to estimate missing values.

� Multiple linear regressions (REG) are rather frequently used,
particularly when links are evident among sensors of the
network: they can capture relationships between downstream
and upstream gauges (Bennis et al., 1997). In gapIt, we inte-
grated the Ordinary Least Square method, provided by the
Apache Commons Mathematics Library.4

� Regression Trees (RT) are suitable too as they are efficient and
easy to visualize/interpret (Kotsiantis, 2013): rules are explicitly

http://commons.apache.org/proper/commons-math/index.html
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described by the tree and are more expressive than the classical
linear regression formula (Witten et al., 2011, section 3.3). gapIt
uses Weka's REPTree implementation.

� Model trees (MT) are included by applying the M5 method
(Quinlan, 1992); this technique was recently used to forecast
flows in Turkey (Sattari et al., 2013). gapIt uses Weka's M5P
implementation (Witten et al., 2011, section 6.6).

� Artificial Neural Networks (ANN) have been recently used to
preprocess missing hydrological data (Mwale et al., 2012; Tfwala
et al., 2013). Although some work has been done to ease the
interpretation of ANN (F�eraud and Cl�erot, 2002), they are still
discounted as black box models. Yet, they represent an
extremely helpful approach to build powerful predictive
models, capable of providing satisfactory results. gapIt uses the
implementation of the multilayer perceptron with back propa-
gation (Witten et al., 2011, section 6.4).

� Expectation-Maximization (EM) method (Van Hulse and
Khoshgoftaar, 2008) was also included in gapIt, through a
Weka plugin which uses EM to replace missing values with a
multivariate normal model.5

The above listed techniques are implemented and available in
gapIt. As a complement to all of them, temporal discretization is
included as an additional option. In other words, for all the eight
methods implemented in gapIt, when applicable, one test is made
considering the discretization in time of the governing equations,
while the second computation is performed excluding this addi-
tional step. The idea behind this is to take the best advantage of
time discretization in all cases where it helps the algorithm in
capturing temporal patterns (i.e. adding date-derived periodic at-
tributes like month of the year or quarter).6

While the application of ANN is accepted as a form of rainfall-
runoff modelling (Gao et al., 2015), it has to be noted that con-
ventional hydrological modelling was not included in this work.
According to Harvey et al. (2010), current rainfall-runoff models are
still too demanding in terms of computation time, resources and
input data, with the need of calibration limiting transferability
among catchments.

More sophisticated techniques, like flow-flow models for donor
stations, as well as forms of inverse hydrology (Croke, 2006;
Kirchner, 2009; Kretzschmar et al., 2014) could be implemented
in gapIt. However, for themomentwe deliberately intended to limit
the involved inputs and the required knowledge and systemic un-
derstanding of hydrological processes.

4.6. Evaluation of the infilling accuracy

Eventually, the user can inspect the results in the GUI, together
with an evaluation of the infilling performance (Fig. 3). The accu-
racy of the gap-filling procedure can be assessed using several er-
rors and performance measures: RMSE, mean absolute error (MAE)
and Nash-Sutcliffe coefficient (NS) (Nash and Sutcliffe, 1970). In
practice, a perfect gap infilling will lead to MAE and RMSE values
equal to 0 and an NS value of 1. In the literature, ranges of satis-
factory fits are provided for various performance indicators
(Moriasi et al., 2007a; Harmal et al., 2014). The NS coefficient is
frequently used in hydrology and has the interesting characteristic
of being dimensionless, which allows the comparison between
different catchments and periods. Its main limitation lies in the fact
that the differences between observed and predicted values are
squared. Thus, larger values in a time series are overestimated
5 http://weka.sourceforge.net/packageMetaData/EMImputation/index.html.
6 http://tinyurl.com/padzrt4.
while lower values are neglected (Krause et al., 2005; Legates and
McCabe, 1999). This leads to an overestimation of the model per-
formance during peak flows and an underestimation during low
flow conditions. One should also note that all performance in-
dicators have their shortcomings. For example, the index of
agreement leads to relatively high values even for poor model fits
and, like the NS, is not sensitive to systematic model over- or
underprediction. Other additional measures are implemented in
the tool, like the index of agreement and the percent bias (PBIAS)
(Moriasi et al., 2007b), but they are not included in this study for
the sake of brevity.

As anticipated we deal with both synthetic and real gaps and,
correspondingly, the strategy to compute the evaluation measures
slightly differs for the two situations.

4.6.1. Infilling accuracy for synthetic gaps
In the case of a synthetic gap, the estimated series for gap

infilling is compared to the actual observations, only in the time
window of the gap itself (Evaluation strategy A). Visually, the tool
simply presents the result by indicating the errors and by plotting
the observed and estimated time series on the same plot (Fig. 4).

4.6.2. Infilling accuracy for real gaps
In contrast, when dealing with a real gap, the software will first

individuate a time window that is centered on the gap itself but
larger than it. The enlargement is set as a percentage of the gap size
itself. The infilling performance (Evaluation strategy B) is computed
on values before and after a given real gap, where observed values
are available.

Obviously in case of a real gap, the performance measures can
only hint to the algorithm performance, as they are computed over
a period that does not exactly match the time span of the gap.

4.7. Selection of the best solution

In conclusion, after computing all possible configurations, i.e.
donor station(s) and infilling methods, the software will automat-
ically provide the best solution, characterized by an optimal
configuration, i.e. the one yielding the smallest RMSE (Evaluation
strategy A for synthetic gaps, Evaluation strategy B for real gaps). All
other indicators, e.g. NS, index of agreement, are provided to the
user to better contextualize the infilling performance and accuracy.
The user can always adjust the configuration, to identify the solu-
tion that is deemed the most appropriate. The user expertise rep-
resents an invaluable resource to interpret the results and improve
and/or reject model outputs.

The best solution retained in the end can be different from the
one initially found by the algorithm in a purely data-driven
approach. Users may simply accept the solution with the best
performance measures or use it as a starting point, to be refined
based on their expertise, by adjusting the configuration. They can
also completely discard the proposed solution, leaving the gap
unfilled if none of the configurations is deemed appropriate. This
kind of post-processing combines the best of a data-driven
approach and a manual infilling based on the human knowledge
of the problem/context.

4.8. A case-based reasoning module for traceability and decision
support

For a given gap (synthetic/real), gapIt determines the best so-
lution as the one with the best performance (Evaluation strategy
A/B), given the available inputs. However, to take the best
advantage of the tool, a knowledge database can be built with
synthetic gaps appropriately created and infilled. In this case, to

http://weka.sourceforge.net/packageMetaData/EMImputation/index.html
http://tinyurl.com/padzrt4


Fig. 3. User interface to visualize and infill a true gap: by default, a solution is selected by the tool: the donor stations and the infilling method are automatically chosen (Algorithm
1). Moreover, users can refine it by selecting different donors and infilling methods according to their knowledge.

Fig. 4. A synthetic gap in the discharge (m3/s) series at Hunsdorf station in 2008. Observed values are depicted in orange, while the estimated ones are in purple. In this case, the
best infilling is achieved by ANN using Useldange (the station having the most similar time series) and Schwebich (the geographically closest station) as donor stations, yielding the
following performance values: MAE ¼ 0.42, RMSE ¼ 0.54 (m3/s), NS ¼ 0.73. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)

L. Giustarini et al. / Environmental Modelling & Software 82 (2016) 308e320314



L. Giustarini et al. / Environmental Modelling & Software 82 (2016) 308e320 315
build the database itself, the identification of best solutions always
relies on the application of Evaluation strategy A. The main goal is
to create a DSS, in the form of a CBR system that solves new cases
based on the solutions of similar past ones (Aamodt and Plaza,
1994). More precisely, the CBR module is an alternative to the
default selection of donor stations and infilling method (Algorithm
1, lines 2e9).

Synthetic gaps are automatically infilled by a batch process,
applying on them all possible configurations (method/use of
nearest station data/use of most similar series/use of downstream
station data/use of upstream station data/use of nearest station
data/use periodic attributes/etc.). As a result, gapIt generates a
knowledge database that stores all the created synthetic gaps and
the best solution (Evaluation strategy A) obtained for each of them:

� For each configuration, the gap filling accuracy is evaluated
(MAE/RMSE/NS/etc.), comparing estimated and observed
values, and then it is stored into the knowledge database.

� In addition, for each synthetic gap, the configuration yielding
the highest accuracy is flagged as the best solution.

In the knowledge database, a case is defined by gap character-
istics and properties, configuration (infilling method, donor sta-
tions), and performance measures (i.e. RMSE, NS) (Table 1).

For any new gap, the most similar cases in the knowledge
database are retrieved by using the k-nearest-neighbors technique.
Users can choose to apply one of the best past configurations
suggested by gapIt on the new gap (Fig. 5). Otherwise, as discussed
earlier, they can use one of the suggested past configurations as a
starting point, for further expert-driven refinement.

In conclusion, for a new real gap, gapIt provides more than one
data-driven best solutions: the configuration with the smallest
RMSE (Evaluation strategy B) and themost similar case(s), based on
past cases found in the knowledge database. Any of these can be
used as a starting point for user-driven refinement consisting in
modifying the infilling method and/or donor station(s), in order to
define the best solution.

After the infilled values have been approved by the end-user,
gapIt stores them in the database keeping a flag on all recon-
structed values, alongwith the configuration used to infill each data
value. For each reconstructed time series, the database contains the
previously-computed errors that are related to the missing values
estimations, in order to propagate the uncertainty information
(Table 1). This traceability is fundamental for further use of the
processed data and helps deal with the uncertainty inherent in any
data infilling approach.
Table 1
Subset of the knowledge database for the stations located at Petrusse and Hunsdorf. This s
gap, the following characteristics are listed: station, gap characteristics, configuration of
(NS).

Gap characteristics Properties Infilling m

Station Length Season Year Rising Flow

Petrusse 4 Winter 2009 yes low NN
Petrusse 8 Winter 2009 yes low REG
Petrusse 10 Autumn 2007 yes low MT
Petrusse 20 Autumn 2007 yes mid NN
Petrusse 50 Spring 2008 yes low RT
Hunsdorf 2 Summer 2013 no low NN
Hunsdorf 3 Summer 2013 no low EM
Hunsdorf 4 Summer 2013 no low RT
Hunsdorf 5 Summer 2013 no mid NN
Hunsdorf 6 Summer 2013 no low NN
Hunsdorf 4 Winter 2009 yes low NN
5. Results

The gapIt software was applied to infill gaps in discharge times
series measured at 24 gauging stations of the Luxembourgish gauge
network. Before infilling real gaps, a first analysis was performed on
synthetic gaps, in order to test the tool's capabilities and, at the
same time, to build a knowledge database with synthetic gaps
appropriately created and infilled.
5.1. Synthetic gaps

Removing actually observed data, 5108 gaps were randomly
created, ranging in length from 2 to 100 days. We made sure that
the different gap lengths are equally represented w.r.t. the total
number of gaps. The synthetic gaps were uniformly distributed
over the entire record duration and across seasons, in order to have
awide range of gaps, characterized by different lengths, distributed
across various periods of the year. As low flow conditions are the
most common in rivers and streams, the majority of synthetic gaps,
65% of the total, were created in low flow regime, while the
remaining share was equally distributed between high and middle
flow conditions.

The synthetic gaps thus created are representative of all types of
gaps encountered in real time series, in terms of lengths and dis-
tribution across seasons and flow regimes.

After computing all possible configurations, gapIt provided the
best solution to fill each synthetic gap, i.e.the configuration having
the smallest RMSE. Needless to say, we encountered cases where
also the best solution, out of all possible configurations, was
nevertheless a sub-optimal one, because its RMSE was too high
(and its NS too low and even negative) to be subsequently accepted
by the end-user. This occurs when very few donor stations are
available for the specific period of the gap and/or with little simi-
larity to the target station.

The following analysis focuses on the best solutions, as provided
by gapIt, for each of the 5108 synthetic gaps. To allow the com-
parison between different catchments and periods, results are
discussed in terms of NS coefficients, even though gapIt uses RMSE
to find the best solution.

The NS values characterizing the 5108 best solutions were
classified in a set of intervals with 0.2 resolution, leading to 5 in-
tervals: [<0.2], [0.2e0.4], [0.4e0.6], [0.6e0.8], [0.8e1.0]. For each
interval, we counted the number of best solution yielding an NS
value included in that interval. Subsequently, the count of best
solutions per interval was divided by the total number of best so-
lutions, i.e. 5108, to obtain a percentage. Fig. 6 shows the
ubset includes several synthetic gaps and the respective infilling procedure. For each
the best solution (infilling method and used donor station(s)), infilling performance

ethod Donor stations NS

Most similar Closest Downstream Upstream

yes yes yes yes 0.95
no yes no no 0.91
no yes yes yes 0.70
yes yes no yes 0.98
yes no yes no 0.88
yes yes no yes 0.72
yes yes no yes 0.94
yes no no no 0.92
yes no no no 0.91
yes no no no 0.85
yes yes yes no 0.96



Fig. 5. The CBR module supports gap infilling by inspecting and applying similar past configurations. In other words, it provides alternative results to infill a current gap. Firstly, it
identifies similar gaps that were corrected in the past (by applying the k-nearest-neighbors technique). Secondly, it retrieves the configuration that provided the best results. Finally,
it reuses these settings to infill the gap at hand.
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distribution of best solutions across different NS ranges.
It is reassuring to observe that 65% of the total gaps were

reconstructed with NS > 0.6. Moreover, the percentage of best so-
lutions with a given NS value increases with increasing NS values:
for example, only 17% of the total best solutions have a NS between
0.0 and 0.2, whereas 48% of the total gaps were reconstructed with
NS > 0.8.

As explained above, there is a small percentage of gaps (12%)
that, evenwith the best solution proposed by gapIt, shows negative
NS values. For example, a synthetic gap of 20 days created in
summer in the Wollefsbach time series was reconstructed with a
best NS of �0.02. Although the donor stations, namely Schwebich
and Heuwelerbach, are both close to the target and lie in similar
catchment areas, they present a discharge peak higher than what
was observed in Wollefsbach. This is most likely caused by very
localized rainfall in the region of the donor stations. Localized
rainfall events are typical of summer and hinders the reconstruc-
tion of missing datawith data transfer techniques, based on a single
variable, i.e. discharge. Moreover, one must take into account that
headwater catchments, like those in this example, are largely
controlled by the underlying bedrock geology which may result in
different hydrological responses even if the distance between
streams is small (Wrede et al., 2015).

Furthermore, the 5108 best solutions were grouped by gap
length. For each gap length group, the percentage of best solutions
with different NS values was computed, following the same pro-
cedure as for Fig. 6. Some examples are plotted in Fig. 7.

For all gap lengths, the distribution of best solutions is left-tailed
(more best solutions in high NS bins than in low NS bins). Note that
the percentage of gaps filled with negative NS values decreases as
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Fig. 6. The distribution of best solutions with different NS values.
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gap length increases. This may be explained by the fact that NS
tends to overestimate model performance during peak flows,
which are more likely to be present in larger time windows, and to
underestimate it during low flow conditions, which represent the
majority of the shortest gaps.

Grouping the 5108 best solutions by season, the percentage of
gaps with NS > 0.6 for spring, summer, autumn and winter are
comparable and equal to 56%, 56%, 75%, 74%, respectively. If
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Fig. 7. Distribution of best solutions with d
clustering by flow regime, practically all gaps in high and middle
flow conditions are infilled with NS > 0.6, while this figure becomes
63% for low flow regime. As anticipated, this outcome is consistent
with the fact that 65% of the gaps occur in low flow condition, the
most common situation for river systems.

Additionally, a second test was performed by running gapIt one
more time on the 5108 synthetic gaps, discarding the option of
using (when available) upstream and/or downstream station(s). In
this case, the share of best solutions having NS > 0.5 drops from 71%
to 58%, indicating a decrease in performance even if this can still be
considered a reasonable result. This indicates a limited influence, in
our gauge network, of upstream/downstream gauge availability. In
other words, the data-driven approach leads to good results in
more than half of the analyzed cases.

A final test was conducted by infilling gaps only using the closest
station as donor. This option further decreases to 49% the per-
centage of gaps filled with NS > 0.5. This result can be partially
explained by the fact that, even though it can generally be assumed
that nearby stations are affected by similar rainfall patterns, it
cannot be expected that they belong to the same catchment (i.e.
upstream/downstream, tributary, …) or to catchments showing
similar hydrological responses to a given input.

For the following analysis, we revert to letting the algorithm
freely select among all available donor stations. The 5108 best so-
lutions were grouped with respect to the infilling method yielding
the best solution. Obviously, the number of bins corresponds to the
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Fig. 8. The distribution of best solutions across different infilling methods. Here all
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number of infilling methods. For each bin, we divided the number
of best solutions by the total number of best solutions, i.e. 5108, to
obtain the percentage.

Fig. 8 shows the distribution of best solutions across all infilling
methods, regardless of the number/type of donor stations and gap
lengths. Under these conditions, ANN and MT were found to be the
most accurate methods for infilling the majority of the synthetic
gaps, with low MAE and RMSE values and high NS coefficients.

A similar trend to that displayed in Fig. 8 has been observedwith
seasonal gaps. When clustering by flow regimes, the percentages of
selected methods are comparable to what was found for the total
number of gaps. Interestingly, however, INTERP was never selected
to infill gaps in high flow condition, while it was chosen for infilling
1% and 8% of middle and low flow regime gaps, respectively. This
can be explained by the fact that low flow conditions tend to show
less important discharge variations, while in case of a flood event, a
rapid increase and/or decrease of values is usually observed.

Subsequently, we investigated the influence of gap length on the
method that leads to the best solution. The total 5108 synthetic
gaps were grouped by their gap length and for each group we
applied the procedure used to obtain Fig. 8. Fig. 9 shows the dis-
tribution of best solutions, across gap length values, for all infilling
methods.

For the groups of gaps characterized by small lengths (<5 days),
gap length (day)
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Fig. 9. The distribution of best solutions, grouped by gap lengths, for different infilling
methods.
ANN provides the best solution for one case out of three, while
other methods share equally the remaining cases. For gap lengths
>5 days a clearer trend emerges: ANN maintains a high percentage
(25e35%) of best solutions, while MT is more frequently the best
method with increasing gap lengths. This confirms the general
finding of Fig. 8, for the total number of synthetic gaps. In Fig. 9, also
RT appears to be chosen more often with increasing gap lengths,
even though its share is smaller than for ANN and MP. On the other
hand, INTERP, EM, REG and NN show a decreasing trend with
increasing gap lengths.

Cases with a gap length �50 days are regarded as an exercise of
analysis rather than as suitable for real applications. Although good
results were obtained in terms of NS for synthetic gaps, infilling
such extended gaps may not be recommended in real cases, due to
uncertainty generally increasing with gap length.

So far, the analysis of the best solutions was focused on either
performance or infilling method. When considering the influence
of donor station(s) that are automatically selected for the best so-
lution, some interesting insights can be revealed. Investigating
some of the best solutions, i.e. characterized by a high NS value, we
found that donor stations had a catchment area comparable to that
of the target station. Moreover, land cover classes, e.g. forest,
grassland, agricultural, urban, and geology types, e.g. sandstone,
marls, schists, alluvials, were found to be present in similar frac-
tions in both donor station(s) and corresponding target station.
Features like catchment area, land cover and geology are consid-
ered to be some of the drivers of the catchment response, in terms
of rainfall-runoff transformation. At the same time, one must
highlight that DTWwas implemented in a non dimensionless form:
in other words, in the selected time window gapIt compares the
actually measured values of discharge, and not their dimensionless
trends. Therefore, in case of similar rainfall patterns, it can be hy-
pothesized that this particular implementation of DTW detects
similarity among catchments in terms of catchment area, land use
and geology, through their response to rainfall, also in cases when
donor and target stations do not belong to the same catchment. In
other words, gapIt helps identifying an appropriate donor station,
even though this does not seem evident at first glance from a hy-
drological perspective.

When excluding human interaction, gapIt is designed to auto-
matically find, for each gap, the configuration having the smallest
RMSE, regardless of the number of donor stations considered for
that specific infilling solution. In this standard setup, 71% of the
5108 synthetic gaps were infilled with NS > 0.5. To test the
robustness of the proposed tool, we also tested gapIt performances
in different setups, re-infilling the 5108 synthetic gaps and
obtaining the results listed in Table 2.

From this analysis, we concluded that in its standard setup gapIt
provides the highest percentage of gaps infilled with NS > 0.5. The
inclusion of the station with the most similar series provides an
improvement in performance from 61% to 71%, proving the added
value of DTW for selecting donor stations. All the tests performed
with different setups show the robustness of the tool, with NS > 0.5
for more than half of the synthetic gaps in all setups, with the
exception of the one performed considering only the station with
the most similar series (selected through DTW).

5.2. Real gaps

Half of the 28 real gaps are characterized by the presence of a
downstream station that can be potentially used for reconstructing
the missing time series, whereas only 4 have both upstream and
downstream stations available and usable. In terms of best per-
forming infilling method, we did not observe a trend as clear as
with the synthetic gaps. This could be expected given the small



Table 2
Comparison of different setups.

Setup Gaps infilled with NS > 0.5

Standard setup 71%
Standard setup but excluding the station with the most similar series 61%
Using only the station with the most similar series 44%
Using the station with the most similar series and the geographically closest one 58%
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number of cases. However, it is interesting to report that MT was
the top performer in 8 cases, while EM was never selected.

To assess the quality of infilling, performance measures were
computed according to Evaluation strategy B. Out of the 28 real
gaps, 19 achieved an NS coefficient >0.8. As mentioned before, this
can be only regarded a simple hint and not as a real performance
value. For instance, in an extreme case, a peak discharge may have
occurred, due to localized rainfall, only in a limited area and it also
may have been recorded (potentially) by only a single station,
whereas all other stations in the surrounding region are not
affected by rainfall and, hence, do not detect any particular
discharge variation. In case the first station would be affected by a
data gap, exactly during that flood event, none of the proposed
infilling methods would be able to correctly reconstruct it. How-
ever, the performance indicators would be quite high, indicating
good infilling results. This highlights the importance of combining
automatic techniques with user expertise and knowledge, as
implemented in gapIt, to obtain reliable gap infilling results.

6. Conclusions

In this paper, we presented gapIt, a tool for infilling gaps in
hydrological discharge time series.

It was tested in the gauging network of Luxembourg to perform
gap infilling on daily values, leading to satisfactory results on
synthetic gaps. The tool was used for infilling ~5000 synthetic gaps,
of different lengths and positions, randomly created along the
entire records of all stations. More than half of the synthetic gaps
were reconstructed with NS > 0.7. The software showed stable
performance, regardless of gap length and flow regime. Superior
performance was obtained by the use of methods such as neural
networks and regression trees. Subsequently, gapIt was applied to
infill 28 real gaps, ranging in length from 2 to 95 days. The good
performance values obtained for more than half of them need to be
considered as simple hints, as it is precisely in these situations that
the added value of gapIt is revealed, consisting in combining an
automated data-driven approach with the interactive user-driven
refinements based on domain expertise through the visual in-
spection of the proposed solutions in their spatio-temporal context.

The proposed gapIt software provides a framework for a more
standardized and traceable gap infilling process. The solution
reached for infilling any specific gap can be retrieved for future
analysis, while the infilled data are appropriately flagged. Ideally,
the infilled data should also be characterized with an estimate of
uncertainty. If the infilling is then used to calibrate or validate
models, such uncertainty can be taken into account: that would
comply with the good practice also suggested by Beven (2015). A
proper uncertainty analysis should distinguish between any un-
certainty deriving, for instance, from measurement instruments
themselves, poor rating curves, etc., and uncertainty introduced by
the infilling procedure. In the present case study, the uncertainty of
the infilled data would derive partially from the uncertain data
(discharge values computed through uncertain rating curves) used
to reconstruct them and partially from the uncertainty inherent in
the infilling method adopted. Futureworkwill focus on uncertainty
analysis, disentangling the different components of uncertainty
(Beven and Westerberg, 2011), to better deal with the risks of
injecting, through infilling, disinformative or inconsistent values.

In its current setup, the main advantage of the software is that it
offers the opportunity of taking the best advantage of software
automation and human expertise. When the user encounters a real
gap, gapIt may help find the best possible solution through CBR.
Nevertheless, the user can always modify both the proposed
infilling method and/or the set of donor stations. In fact, a database
of infilled synthetic gaps is available from the start in gapIt and
from there the tool can suggest the best solution. However, any
solution obtained for a real gap by an expert working with this tool
is added to the database, indirectly including part of the human
expertise into the database itself. The more cases are stored in the
system, the better results it will achieve.

It is important to note that at present no limit for the distance
between target and donor station was set. This is a consequence of
the limited area of our case study. However, when dealing with
larger regions, it is legitimate to foresee the application of spatial
limits in the search for donor station(s). These limits may be set
according to the knowledge of the hydraulic and hydrological
behavior of the region and should probably be different from sta-
tion to station. Like most CBR systems, gapIt will always provide a
solution, regardless of the number of similar cases available, or the
strength of the similarity. For example, if all donor stations except
one havemissing data in the same time period as the target station,
the algorithm will use that single station as donor, as it is the only
one available with recorded data, regardless of its location in space
and/or its similarity in terms of DTW. This could be an issue in
larger regions with several periods of instrument malfunctioning.
Coupling the automatic algorithm with the visual inspection tool
will allow the user to compensate the unavoidable drawbacks of a
purely data-driven approach.

First promising results were obtained infilling 15-min values
(i.e. original resolution of the present case study). However, due to
the complexity of dealing with high frequency sampling, further
testing is needed. Despite its versatility and capability of working
with different temporal resolutions, in the present implementation
gapIt cannot deal with irregularly sampled data and/or very sparse
measurement networks, where the need for infilling is arguably
more critical.
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